From: Christian Szegedy (szegedy@or.uni-bonn.de)
Date: Fri Oct 08 2004 - 12:27:47 MDT
Bill Hibbard wrote:
>But his argument depends on a property of Turing machines, namely
>the ability to do arithmetic with arbitrary integers, not shared
>by finite state machines. So his argument fails by assuming a
>capability that humans do not have.
>
No, he does not assume any capability. He *exhibits* a capability:
that you can decide something you are not supposed to be able to.
His argument is based on a proof by contradiction. It goes by:
1) Assume that your brain can be modeled by a Turing machine
(This is true even if it is a finite state machine)
2) Let us consider the following problem that this TM cannot
solve.
3) But, you can clearly solve it => Contradiction!!!
4) Since we had a contradiction, your brain cannot be modelled by a TM.
You cannot refute this line of argumentation by saying that our brain is
an FSM
changing his proof and say that the modified proof is flawed.
You must refute the *original proof*.
This archive was generated by hypermail 2.1.5 : Tue Feb 21 2006 - 04:22:46 MST